organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Benzoyl-13-bromo-4-hydroxy[2.2]paracyclophane

Kelin Ma,^a Wenzeng Duan,^{a,b} Fuyan He^a and Yudao Ma^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Taishan University, Tai'an 27012, People's Republic of China Correspondence e-mail: ydma@sdu.edu.cn

Received 13 March 2012; accepted 30 March 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.147; data-to-parameter ratio = 11.0.

The title compound, $C_{23}H_{19}BrO_2$, was synthesized from 13bromo-4-hydroxy[2.2]paracyclophane and benzoyl chloride. The hydroxy and carbonyl groups are involved in intramolecular $O-H\cdots O$ hydrogen bonding. The crystal packing exhibits weak $C-H\cdots O$ interactions, which link the molecules into sheets parallel to the *bc* plane.

Related literature

For a related structure, see: Hong *et al.* (2011). For background to [2.2]paracyclophanes, see: Fache *et al.* (2000); Danilova *et al.* (2003). For details of the synthesis, see: Xin *et al.* (2010).

Experimental

Crystal data $C_{23}H_{19}BrO_2$ $M_r = 407.29$

Monoclinic, $P2_1/c$ a = 12.5250 (18) Å

b = 7.8885 (12) Å	
c = 19.143 (3) Å	
$\beta = 106.812 \ (3)^{\circ}$	
V = 1810.5 (5) Å ³	
Z = 4	

Data collection

Bruker APEXII CCD	7291 measured reflections
diffractometer	2586 independent reflections
Absorption correction: numerical	1810 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.033$
$T_{\min} = 0.804, \ T_{\max} = 0.838$	$\theta_{\rm max}^{\rm max} = 23.3^{\circ}$
Refinement	

Mo *K* α radiation $\mu = 2.29 \text{ mm}^{-1}$

 $0.10 \times 0.10 \times 0.08 \text{ mm}$

T = 273 K

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.049 \\ wR(F^2) &= 0.147 \\ S &= 1.04 \\ 2586 \text{ reflections} \end{split} \qquad \begin{array}{l} 236 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} &= 0.59 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} &= -0.74 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···O2	0.82	1.81	2.530 (5)	146
$C4 - H4 \cdot \cdot \cdot O2^{i}$	0.93	2.70	3.356 (7)	128
C19−H19···O1 ⁱⁱ	0.93	2.69	3.404 (7)	134

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support from the National Natural Science Foundation of China (grant No. 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5263).

References

Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Danilova, T. I., Rozenberg, V. I., Sergeeva, E. I., Starikova, Z. A. & Bräse, S. (2003). Tetrahedron Asymmetry, 14, 2013–2019.

Fache, F., Schultz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159–2231.

Hong, B., Ma, Y., Duan, W., He, F. & Zhao, L. (2011). Acta Cryst. E67, o950. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xin, D. Y., Ma, Y. D. & He, F. Y. (2010). Tetrahedron Asymmetry, 21, 333-338.

supplementary materials

Acta Cryst. (2012). E68, o1380 [doi:10.1107/S1600536812013803]

5-Benzoyl-13-bromo-4-hydroxy[2.2]paracyclophane

Kelin Ma, Wenzeng Duan, Fuyan He and Yudao Ma

Comment

The planar chiral Schiff bases have been used in many asymmetric reactions (Danilova *et al.*, 2003). [2. 2]Paracyclophane present planar chirality due to its configurationally rigid structure (Hong *et al.*, 2011). The salicyaldehyde derivative based on [2. 2]paracyclophane is the parent compound of various Schiff base ligands (Fache *et al.*, 2000). We reported here the crystal structure of the title compound (I), which is a derivative of [2.2]paracyclophane.

In (I) (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Hong *et al.*, 2011). The mean planes A (C16-C21), B (C16/C15/O2), C (O2/C15/C14), D(C9-C14) and E (C1-C6) form the following dihedral angles: A/B 41.1 (2)°, C/D=18.4 (2)°, B/C=4.1 (2)° and D/E=1.6 (2)°. The hydroxy and carbonyl groups are involved in O—H···O hydrogen bonding (Table 1).

The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1), which link the molecules into sheets parallel to *bc* palne.

Experimental

The title compound was prepared by the method reported by Xin *et al.* (2010). The crystals were obtained by recrystallization from EtOH.

Refinement

All the H atoms were located in difference maps, but placed in idealized positions (O—H 0.82 Å, C—H 0.93–0.97 Å), and refined as riding, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of (I) showing the atom numbering scheme and 50% probability displacement ellipsoids. The H atoms are omitted for clarity.

5-Benzoyl-13-bromo-4-hydroxy[2.2]paracyclophane

C ₂₃ H ₁₉ BrO ₂ $M_r = 407.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.5250 (18) Å b = 7.8885 (12) Å c = 19.143 (3) Å $\beta = 106.812 (3)^{\circ}$ $V = 1810.5 (5) \text{ Å}^3$ Z = 4	F(000) = 832 $D_x = 1.494 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1805 reflections $\theta = 2.4-20.5^{\circ}$ $\mu = 2.29 \text{ mm}^{-1}$ T = 273 K Block, colourless $0.10 \times 0.10 \times 0.08 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: numerical (<i>SADABS</i> ; Bruker, 2007) $T_{\min} = 0.804, T_{\max} = 0.838$	7291 measured reflections 2586 independent reflections 1810 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 23.3^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -12 \rightarrow 13$ $k = -7 \rightarrow 8$ $l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.147$	neighbouring sites
S = 1.04	H-atom parameters constrained
2586 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0807P)^2 + 0.9145P]$
236 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.006$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.74 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.94299 (6)	-0.03797 (10)	1.18603 (3)	0.1051 (4)
C13	0.6602 (3)	0.0719 (6)	1.0485 (2)	0.0529 (11)
C10	0.6311 (3)	0.3699 (6)	0.9720 (2)	0.0556 (11)
H10	0.6135	0.4696	0.9451	0.067*
O1	0.6717 (4)	-0.0722 (4)	1.08778 (19)	0.0844 (11)
H1	0.6952	-0.1476	1.0667	0.127*
C9	0.6706 (3)	0.2331 (5)	0.9423 (2)	0.0456 (10)
C12	0.6440 (3)	0.2212 (6)	1.0841 (2)	0.0548 (11)
C5	0.8972 (3)	0.2809 (7)	1.0081 (2)	0.0585 (12)
C11	0.6170 (3)	0.3618 (6)	1.0413 (3)	0.0624 (13)
H11	0.5882	0.4556	1.0591	0.075*
C8	0.7383 (3)	0.2704 (5)	0.8900 (2)	0.0546 (11)
H8A	0.7219	0.3845	0.8710	0.066*
H8B	0.7164	0.1924	0.8491	0.066*
C14	0.6714 (3)	0.0746 (5)	0.9773 (2)	0.0486 (10)
C2	0.8655 (3)	0.3001 (7)	1.1481 (2)	0.0579 (12)
C4	0.8811 (4)	0.4355 (7)	1.0375 (3)	0.0698 (14)
H4	0.8816	0.5345	1.0113	0.084*
C6	0.9229 (3)	0.1463 (7)	1.0567 (2)	0.0608 (12)
H6	0.9494	0.0460	1.0423	0.073*
C3	0.8642 (4)	0.4442 (7)	1.1062 (3)	0.0680 (14)
Н3	0.8517	0.5493	1.1244	0.082*
C16	0.6713 (4)	-0.1147 (5)	0.8667 (2)	0.0587 (12)
C15	0.6967 (4)	-0.0862 (6)	0.9465 (3)	0.0661 (13)
O2	0.7342 (5)	-0.2069 (5)	0.9862 (2)	0.1206 (17)
C7	0.8650 (4)	0.2539 (7)	0.9266 (2)	0.0744 (15)

H7A	0.8892	0.1419	0.9167	0.089*
H7B	0.9038	0.3363	0.9052	0.089*
C17	0.7418 (5)	-0.2153 (6)	0.8396 (3)	0.0806 (15)
H17	0.8073	-0.2593	0.8706	0.097*
C20	0.5464 (5)	-0.0899 (8)	0.7459 (3)	0.0811 (16)
H20	0.4804	-0.0479	0.7146	0.097*
C21	0.5745 (4)	-0.0538 (6)	0.8193 (3)	0.0666 (14)
H21	0.5271	0.0129	0.8372	0.080*
C1	0.9105 (3)	0.1569 (6)	1.1249 (2)	0.0586 (12)
C19	0.6139 (6)	-0.1852 (8)	0.7194 (3)	0.0922 (19)
H19	0.5946	-0.2089	0.6697	0.111*
C18	0.7114 (7)	-0.2484 (7)	0.7647 (4)	0.096 (2)
H18	0.7577	-0.3139	0.7454	0.115*
C22	0.6778 (4)	0.2271 (7)	1.1667 (2)	0.0710 (14)
H22A	0.6724	0.1138	1.1851	0.085*
H22B	0.6257	0.2987	1.1819	0.085*
C23	0.7980 (4)	0.2950 (7)	1.2014 (2)	0.0724 (14)
H23A	0.7938	0.4083	1.2201	0.087*
H23B	0.8355	0.2231	1.2423	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.1093 (6)	0.1234 (6)	0.0873 (5)	0.0489 (4)	0.0358 (4)	0.0560 (4)
C13	0.055 (3)	0.053 (3)	0.051 (3)	-0.009(2)	0.016 (2)	0.004 (2)
C10	0.052 (3)	0.046 (3)	0.059 (3)	0.008 (2)	0.000 (2)	0.000 (2)
01	0.132 (3)	0.060 (2)	0.068 (2)	-0.011 (2)	0.040 (2)	0.0151 (18)
C9	0.050(2)	0.038 (2)	0.043 (2)	0.0016 (18)	0.0045 (19)	-0.0004 (19)
C12	0.043 (2)	0.070 (3)	0.054 (3)	0.000(2)	0.018 (2)	-0.008(2)
C5	0.040 (2)	0.081 (4)	0.056 (3)	0.003 (2)	0.016 (2)	0.010 (3)
C11	0.051 (3)	0.061 (3)	0.071 (3)	0.015 (2)	0.011 (2)	-0.016 (3)
C8	0.074 (3)	0.043 (2)	0.043 (2)	-0.003 (2)	0.011 (2)	0.0063 (19)
C14	0.058 (3)	0.042 (3)	0.044 (2)	-0.0009 (19)	0.012 (2)	-0.0047 (19)
C2	0.046 (3)	0.074 (3)	0.047 (3)	-0.002(2)	0.003 (2)	-0.007(2)
C4	0.063 (3)	0.070 (4)	0.071 (3)	-0.015 (3)	0.011 (3)	0.014 (3)
C6	0.049 (3)	0.080 (4)	0.057 (3)	0.022 (2)	0.020 (2)	0.010 (3)
C3	0.061 (3)	0.065 (3)	0.070 (3)	-0.010 (2)	0.007 (3)	-0.018 (3)
C16	0.086 (3)	0.034 (2)	0.061 (3)	-0.008(2)	0.029 (3)	-0.009(2)
C15	0.098 (4)	0.033 (3)	0.067 (3)	0.004 (2)	0.024 (3)	0.002 (2)
O2	0.235 (5)	0.045 (2)	0.079 (3)	0.041 (3)	0.040 (3)	0.011 (2)
C7	0.068 (3)	0.107 (4)	0.055 (3)	0.014 (3)	0.028 (3)	0.018 (3)
C17	0.110 (4)	0.049 (3)	0.094 (4)	0.002 (3)	0.047 (3)	-0.007 (3)
C20	0.095 (4)	0.080 (4)	0.071 (4)	-0.032 (3)	0.027 (3)	-0.023 (3)
C21	0.078 (3)	0.063 (3)	0.065 (3)	-0.019 (3)	0.030 (3)	-0.017 (3)
C1	0.045 (2)	0.080 (4)	0.049 (3)	0.010 (2)	0.011 (2)	0.016 (2)
C19	0.133 (6)	0.076 (4)	0.076 (4)	-0.037 (4)	0.042 (4)	-0.024 (3)
C18	0.157 (6)	0.052 (4)	0.111 (5)	-0.018 (4)	0.092 (5)	-0.029 (3)
C22	0.069 (3)	0.094 (4)	0.057 (3)	0.000 (3)	0.029 (2)	-0.014 (3)
C23	0.070 (3)	0.098 (4)	0.050 (3)	-0.001 (3)	0.019 (2)	-0.014 (3)

Geometric parameters (Å, °)

Br1—C1	1.903 (5)	C6—C1	1.362 (6)
C13—O1	1.348 (5)	С6—Н6	0.9300
C13—C12	1.405 (6)	С3—Н3	0.9300
C13—C14	1.411 (6)	C16—C21	1.374 (6)
С10—С9	1.376 (6)	C16—C17	1.394 (7)
C10-C11	1.390 (6)	C16—C15	1.484 (6)
C10—H10	0.9300	C15—O2	1.225 (5)
01—H1	0.8200	C15—O2	1.225 (5)
C9—C14	1.418 (6)	02—02	0.000 (11)
С9—С8	1.516 (6)	C7—H7A	0.9700
C12—C11	1.362 (6)	C7—H7B	0.9700
C12—C22	1.513 (6)	C17—C18	1.397 (8)
C5—C4	1.383 (7)	C17—H17	0.9300
С5—С6	1.387 (6)	C20—C19	1.336 (8)
С5—С7	1.508 (6)	C20—C21	1.377 (6)
C11—H11	0.9300	C20—H20	0.9300
С8—С7	1.544 (6)	C21—H21	0.9300
C8—H8A	0.9700	C19—C18	1.370 (9)
C8—H8B	0.9700	C19—H19	0.9300
C14—C15	1.472 (6)	C18—H18	0.9300
С2—С3	1.389 (7)	C22—C23	1.554 (7)
C2—C1	1.391 (6)	C22—H22A	0.9700
C2—C23	1.503 (6)	C22—H22B	0.9700
C4—C3	1.392 (7)	C23—H23A	0.9700
C4—H4	0.9300	C23—H23B	0.9700
O1—C13—C12	116.4 (4)	O2—C15—O2	0.0 (4)
O1—C13—C14	121.8 (4)	O2—C15—C14	120.6 (4)
C12—C13—C14	121.7 (4)	O2—C15—C14	120.6 (4)
C9—C10—C11	121.2 (4)	O2—C15—C16	116.8 (4)
C9—C10—H10	119.4	O2—C15—C16	116.8 (4)
C11—C10—H10	119.4	C14—C15—C16	122.4 (4)
С13—01—Н1	109.5	O2—O2—C15	0 (10)
C10—C9—C14	116.8 (4)	C5—C7—C8	113.0 (4)
С10—С9—С8	117.2 (4)	С5—С7—Н7А	109.0
С14—С9—С8	123.7 (4)	C8—C7—H7A	109.0
C11—C12—C13	115.8 (4)	С5—С7—Н7В	109.0
C11—C12—C22	123.3 (4)	C8—C7—H7B	109.0
C13—C12—C22	119.7 (4)	H7A—C7—H7B	107.8
C4—C5—C6	115.7 (4)	C16—C17—C18	118.3 (6)
C4—C5—C7	121.3 (5)	C16—C17—H17	120.8
С6—С5—С7	121.8 (5)	C18—C17—H17	120.8
C12—C11—C10	122.3 (4)	C19—C20—C21	120.0 (6)
C12—C11—H11	118.8	C19—C20—H20	120.0
C10-C11-H11	118.8	C21—C20—H20	120.0
С9—С8—С7	112.4 (3)	C16—C21—C20	121.2 (5)
С9—С8—Н8А	109.1	C16—C21—H21	119.4
С7—С8—Н8А	109.1	C20—C21—H21	119.4

С9—С8—Н8В	109.1	C6—C1—C2	121.7 (4)
С7—С8—Н8В	109.1	C6—C1—Br1	118.4 (4)
H8A—C8—H8B	107.9	C2—C1—Br1	119.6 (3)
C13—C14—C9	118.8 (4)	C20—C19—C18	120.7 (6)
C13—C14—C15	117.9 (4)	С20—С19—Н19	119.6
C9—C14—C15	122.9 (4)	C18—C19—H19	119.6
C3—C2—C1	114.8 (4)	C19—C18—C17	120.7 (6)
C3—C2—C23	120.0 (5)	C19—C18—H18	119.7
C1—C2—C23	123.7 (5)	C17—C18—H18	119.7
C5—C4—C3	120.6 (5)	C12—C22—C23	113.6 (4)
C5—C4—H4	119.7	C12—C22—H22A	108.8
C3—C4—H4	119.7	C23—C22—H22A	108.8
C1—C6—C5	121.8 (5)	C12—C22—H22B	108.8
С1—С6—Н6	119.1	C23—C22—H22B	108.8
С5—С6—Н6	119.1	H22A—C22—H22B	107.7
C2—C3—C4	121.7 (5)	C2—C23—C22	112.6 (4)
С2—С3—Н3	119.2	C2—C23—H23A	109.1
С4—С3—Н3	119.2	С22—С23—Н23А	109.1
C21—C16—C17	119.1 (5)	С2—С23—Н23В	109.1
C21—C16—C15	120.8 (4)	С22—С23—Н23В	109.1
C17—C16—C15	120.0 (5)	H23A—C23—H23B	107.8

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O1—H1…O2	0.82	1.81	2.530 (5)	146
C4—H4····O2 ⁱ	0.93	2.70	3.356 (7)	128
C19—H19…O1 ⁱⁱ	0.93	2.69	3.404 (7)	134

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, -*y*-1/2, *z*-1/2.